Indian Statistical Institute, Bangalore

B. Math. Second Year First Semester - Analysis III

Max Marks 100

Date : Dec 26, 2016

Back Paper Exam

Remark: Each question carries 20 marks.

- 1. Let U, V, W be open subsets of $\mathbb{R}^n, \mathbb{R}^m$ and \mathbb{R}^l respectively, and let $g: W \to V$ and $f: V \to U$ be C^2 functions. Let x_i, y_j and z_k denote the co-ordinate functions on $\mathbb{R}^n, \mathbb{R}^m$ and \mathbb{R}^l respectively. Thus, $1 \leq i \leq n, 1 \leq j \leq m$ and $1 \leq k \leq l$.
 - (a) Show that $\frac{\partial}{\partial z_k}(x_i \ o \ f \ o \ g) = \sum_{j=1}^m \frac{\partial}{\partial y_j}(x_i o f) \ og \ \frac{\partial}{\partial z_k}(y_j o g).$

Duration : 3 hours

- (b) Define the pull-back $f^*(w)$ of differential forms w on U (under f) and show that pull back commutes with exterior derivative, i.e., if w is a differential form on U of class C^1 then $f^*(dw) = d(f^*(w))$.
- 2. Let U and V be open subsets of \mathbb{R}^m and \mathbb{R}^n and let $f: U \to V$ be a \mathbb{C}^1 function.
 - (a) Show that f is locally Lipscitz, i.e., every point $x \in U$ has a neighborhood $K \subseteq U$ and a constant c > 0 (depending on K) such that $||f(y) f(z)|| \le c||y z||$ for all $y, z \in K$.
 - (b) If m = n and $x \in U$ is such that f'(x) is invertible then, show that there is a neighborhood $K' \subseteq U$ of x and a constant c' > 0 such that $||f(y) f(z)|| \ge c'||y z||$ for all $y, z \in K'$.
- 3. Show that any two norms on \mathbb{R}^n determine the same notion of convergence of sequences.
- 4. (a) Give an example of a differentiable function f on a neighborhood U of 0 in \mathbb{R} to itself such that $f'(0) \neq 0, f'$ is bounded on U, but f is not one-one on any neighborhood of 0.
 - (b) Give an example of a C^1 function $f : \mathbb{R}^2 \to \mathbb{R}^2$ such that f'(x) is invertible for all x, but f is not one-one.
- 5. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function and let $x \in \mathbb{R}^n$.
 - (a) If the n partial derivatives of f exist and are bounded on some neighborhood of x then show that f is continuous at x.
 - (b) If f is differentiable on a neighborhood of x, and f attains a local maximum at x then show that f'(x) = 0.